Fuzzy Soft Set Based Classification for Gene Expression Data
نویسندگان
چکیده
Abstract — Classification is one of the major issues in Data Mining Research fields. The classification problems in medical area often classify medical dataset based on the result of medical diagnosis or description of medical treatment by the medical practitioner. This research work discusses the classification process of Gene Expression data for three different cancers which are breast cancer, lung cancer and leukemia cancer with two classes which are cancerous stage and non cancerous stage. We have applied a fuzzy soft set similarity based classifier to enhance the accuracy to predict the stages among cancer genes and the informative genes are selected by using Entopy filtering.
منابع مشابه
Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملAttribute selection based on information gain ratio in fuzzy rough set theory with application to tumor classification
Tumor classification based on gene expression levels is important for tumor diagnosis. Since tumor data in gene expression contain thousands of attributes, attribute selection for tumor data in gene expression becomes a key point for tumor classification. Inspired by the concept of gain ratio in decision tree theory, an attribute selection method based on fuzzy gain ratio under the framework of...
متن کاملClassification and Biomarker Genes Selection for Cancer Gene Expression Data Using Random Forest
Background & objective: Microarray and next generation sequencing (NGS) data are the important sources to find helpful molecular patterns. Also, the great number of gene expression data increases the challenge of how to identify the biomarkers associated with cancer. The random forest (RF) is used to effectively analyze the problems of large-p and smal...
متن کاملFeature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملNeural Network and Fuzzy Logic Approach for Satellite Image Classification: A Review
Image classification is the important part of remote sensing, image analysis and pattern recognition. Digital Image Classification is the process of sorting all the pixels in an image into a finite number of individual classes. Landuse/Landcover classification of satellite images is an important activity for extracting geospatial information for military & civil purposes like inaccessible areas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1301.1502 شماره
صفحات -
تاریخ انتشار 2013